M.Sc. 4th Semester Examination, 2021
 CHEMISTRY
 (Inorganic Chemistry Special)
 Paper : CHEM 403E
 Course ID : 41453

Time: 2 Hours
Full Marks: 40
The figures in the right-hand side margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

1. Answer any five of the following questions:

$2 \times 5=10$
(a) Give two differences between ionic and electronic conductivity.
(b) What is vacancy conduction?
(c) What is a fuel cell? Give one example of solid oxide fuel cell (SOFC).
(d) Explain Seebeck effect with an example.
(e) Provide two examples of anticancer drug with structures.
(f) Name the diseases caused by the deficiency of Fe and Zn .
(g) What is Wilson's and Minamata disease?
2. Answer any four of the following questions: $5 \times 4=20$
(a) (i) What is interstitial conduction? Discuss interstitial conduction in BaF_{2}.
(ii) Discuss the structure of β-alumina. $2.5+2.5=5$
(b) (i) What is McLafferty rearrangement?
(ii) Discuss the stability order of the following fragments in mass spectrometry

(c) (i) Cis-platin is used as an anti-cancer drug but trans-platin is not- Explain.
(ii) Cis-platin binds with DNA. How can one understand this from the NMR experiment?

$$
2.5+2.5=5
$$

(d) (i) Write the redox activities of the flavin and disulfide/thiol centers which are involved in mercury(II) reductase.
(ii) Discuss the intensity ratio of $M, M+2$, and $M+4$ peaks in mass spectrometry of Br_{2}.

$$
2.5+2.5=5
$$

(e) (i) Name mass spectrometric techniques as per the source of ionization.
(ii) Write the principle of magnetic sector analyzer in mass spectrometry. $\quad 3+2=5$
(f) (i) Write the point group of $\mathrm{BF}_{3}, \mathrm{C}_{6} \mathrm{H}_{6}$, and $\mathrm{H}_{2} \mathrm{O}$.
(ii) Describe the principle of auger electron spectroscopy. 3+2=5
3. Answer any one of the following questions:
$10 \times 1=10$
(a) (i) What is the principle of Atomic Absorption Spectroscopy? What is the difference between atomic absorption and emission spectroscopy?
(ii) Why diatomic molecules are IR inactive but Raman active? Why spherical molecules are Raman inactive? Calculate the number of vibrational modes in CO_{2} and NH_{3}.

$$
(2+2)+(2+2+2)=10
$$

(b) What is Stevenson's rule in mass spectrometry? Why mass is a spectrometric method and not spectroscopic technique? Discuss the fragmentation scheme of cinnamaldehyde in Figure 1. Discuss the fragmentation scheme of ethyl acetate in Figure 2.

Figure 1

Figure 2

